
MTH 203 Final Exam solutions

1. Show that Zn has a unique element of order 2 if, and only if, 2 | n.

Solution. Suppose that Zn has a unique element of order 2. Then by the La-
grange’s Theorem, it follows that 2 | n.

Conversely, let us assume that 2 | n. First, we note that in any group G, there
is a one-to-one correspondence between the elements of order 2, and the distinct
order 2 subgroups of G. By Lesson Plan 1.4 (iv), every proper subgroup of Zn is
of the form 〈[n/d]〉, where d is a proper divisor of n. Moreover, by Lesson Plan
1.2 (vii), we know that for any [k] ∈ Zn, o([k]) = n/ gcd(k, n), so we have that

o([n/d]) = 2 ⇐⇒ n/ gcd(n/d, n) = 2 ⇐⇒ n/(n/d) = 2 ⇐⇒ d = 2.

Hence, Zn has a unique element of order 2, namely [n/2].
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2. Show that a group G is abelian if, and only if, the map

ϕ : G→ G : g
ϕ7−→ g−1,∀g ∈ G

is an isomorphism.

Solution. Suppose that ϕ is an isomorphism. Then for any a, b ∈ G, we have

b−1a−1 = (ab)−1 (By group laws)
= ϕ(ab) (By definition)
= ϕ(a)ϕ(b) (∵ ϕ is a homomorphism)
= a−1b−1 (By definition)

Hence, it follows that G is abelian.

Conversely, suppose that G is abelian. Then for any a, b ∈ G, we have

ϕ(ab) = (ab)−1 (By definition)
= b−1a−1 (By group laws)
= a−1b−1 (∵ G is abelian)
= ϕ(a)ϕ(b). (By definition)

So, we have that ϕ is a homomorphism. It remains to show that ϕ is bijective.
Since for each g ∈ G,

ϕ(g−1) = (g−1)−1 = g,

is follows that ϕ is surjective. Furthermore, we see that

Kerϕ = {x ∈ G : ϕ(x) = 1}
= {x ∈ G : x−1 = 1}
= {x ∈ G : x = 1}
= {1},

from which it follows that ϕ is injective, and hence an isomorphism.
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3. Let Rn[x] be the additive group of all polynomials of degree ≤ n in the variable
x with coefficients from R. For 1 ≤ k ≤ n, let Dk : Rn[x] → Rn[x] be the kth

derivative map defined by

Dk(p(x)) =
dk

dxk
(p(x)), ∀ p(x) ∈ Rn[x].

(a) Show that Dk is a homomorphism.

(b) Determine KerDk and ImDk.

(c) Show that Rn[x]/Rn−1[x] ∼= R.

Solution. (a) Given f(x), g(x) ∈ Rn[x], we see that

Dk(f(x) + g(x)) = dk

dxk
(f(x) + g(x)) (By definition)

= dk

dxk
(f(x)) + dk

dxk
(g(x)) (Derivative laws)

= Dk(f(x)) +Dk(g(x)), (By definition)

which shows that Dk is a homomorphism.

(b) First, we observe that given p(x) ∈ Rn[x] is a polynomial with deg(p(x)) = `,
then

deg(Dk(p(x))) =

{
`− k, if ` > k, and

0, otherwise.
(**)

Therefore, we have

KerDk = {p(x) ∈ Rn[x] : Dk(p(x)) = 0} (By definition)
= {p(x) ∈ Rn[x] : deg(p(x)) ≤ k − 1} (By (**))
= Rk−1[x]. (By definition)

From (**), it is apparent that ImDk < Rn−k[x]. Furthermore, given any p(x) ∈
Rn−k[x], let Pk(x) be any kth anti-derivative of p(x) whose constant term is 0.

More precisely, if p(x) =
n−k∑
i=1

aix
i, then Pk(x) has the form

Pk(x) =
n−k−1∑
i=1

cix
i +

n∑
i=n−k

bix
i, where the ci ∈ R are arbitrary, and bi =

ai
iP k

.

Then by the definition of anti-derivative, we have Dk(Pk(x)) = p(x), which shows
that

ImDk = Rn−k[x].

(c) Applying the First Isomorphism Theorem to the homomorphism Dn, we get

Rn[x]/KerDn
∼= ImDn.

Moreover, by (b), we know that

KerDn = Rn−1[x] and ImDn = R0[x].

The assertion now follows from the fact that R0[x] = R, the additive group of all
constant polynomials.
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4. Consider the group G = A4.

(a) Describe the order 2 subgroups of G.

(b) Describe the order 3 subgroups of G.

(c) Does G have an element g with o(g) ≥ 4? Explain why, or why not.

(d) Show that G has a unique subgroup of order 4.

Solution. We know form Lesson Plan 6.1 (vii), that the group G is isomorphic to
the group of rotational symmetries of a tetrahedron T4 (see Lesson Plan 6.2 (vii)).
To describe this isomorphism explicitly, we label the vertices of the tetrahedron
with the indices 1-4, and see that each rotational symmetry r ∈ Sym(T4) induces
an even permutation σr of the set of vertices {1, 2, 3, 4}. Hence, the map

Sym(T4)→ A4 : r 7→ σr (*)

is an isomorphism.

(a) The order 2 subgroups of A4 corresponds to (and are generated by) the order
2 elements in A4, which are induced by the order 2 (i.e π radians) rotations of T4
under the isomorphism (*). There are precisely 3 such rotations about the 3 axes
joining the mid points of opposite edges. These rotations induce permutations
which are products of two disjoint transpositions. Hence, there are 3 distinct
subgroups of A4 of order 2, which are:

〈(1 2)(3 4)〉, 〈(1 3)(2 4)〉, and 〈(1 4)(2 3)〉.

(b) By Lagrange’s theorem, every non-trivial element in a subgroup of order 3 is
of order 3. Furthermore, as every subgroup of order 3 is cyclic, it is generated by
an element of order 3. Since the map (*) is an isomorphism, any element of order
3 induced by a rotation of order 3 in Sym(T4). There are precisely 8 such non-
trivial rotations (by 2π/3 and 4π/3 radians) about the 4 axes joining vertices in
T4 to the centers of opposite faces. These rotations induce 8 distinct 3-cycles in A4

under the isomorphism (*). Finally, these 3-cycles generate 4 distinct subgroups,
which are:

〈(1 2 3)〉, 〈(2 3 4)〉, 〈(3 4 1)〉, and 〈(4 1 2)〉.

(c) Any element g with o(g) ≥ 4 has to be induced by a rotation of order ≥ 4 in
Sym(T4) under the isomorphism (*). However, there exists no rotation in Sym(T4)
of order greater than 3. Hence, there exists no element g ∈ A4 with o(g) ≥ 4.

(d) We know from class that any group of order 4 is isomorphic either to the
cyclic group Z4, or the Klein 4-group Z2 × Z2. From (c) we know that G has
no elements of order 4, so any subgroup of order 4 in A4 (if it exists) has to be
the Klein 4-group. Further, we know that the Klein 4-group has 3 non-trivial
elements order 2. From (b), we know that A4 has exactly 3 distinct elements of
order 2, namely:

(1 2)(3 4), (1 3)(2 4), and (1 4)(2 3).

These three elements together generate a order 4 subgroup in A4 given by

{1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)},

which is isomorphic to the Klein 4-group.
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5. (a) Is the group SO(2,R) abelian? Prove or disprove.

(b) Describe two distinct monomorphisms SO(2,R)→ SO(3,R).

(c) Show that SO(3,R) is non-abelian.

Solution. (a) From class (see Lesson Plan 6.3 (iii)), we know that SO(2,R) ∼= S1.
Since S1 is an abelian group under complex multiplication, it follows that SO(2,R)
is abelian.

(b) We know from class (see Lesson Plan 6.3 (iii)), that any element in SO(2,R)
is of the form

Aθ :=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
, θ ∈ R.

We consider two maps ψ1, ψ2 : SO(2,R) → SO(3,R) defined in the following
manner:

ψ1(Aθ) =

1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)

 , ψ2(Aθ) =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 , for Aθ ∈ SO(2,R).

A simple computation reveals that for i = 1, 2, ψi(Aθ) ∈ SO(3,R), for each θ ∈ R.
Moreover, given α, β ∈ R with α = β, we have that

Aα = Aβ =⇒ ψi(Aα) = ψi(Aβ),

which shows that ψi is well-defined for i = 1, 2.

We will now show that ψ1 is a monomorphism, as the argument for ψ2 is analogous.
First, we observe that given Aα, Aβ ∈ SO(2,R), we have

AαAβ =

[
cos(α + β) sin(α + β)
− sin(α + β) cos(α + β)

]
= Aα+β. (†)

For simplicity of notation, we will write ψ1(Aθ) =

[
1 0
0 Aθ

]
. With this notation

in place, we have

ψ1(Aα)ψ1(Aβ) =

[
1 0
0 AαAβ

]
(By direct computation)

=

[
1 0
0 Aα+β

]
(By (†))

= ψ1(Aα+β) (By definition)

= ψ1(AαAβ) (By (†)),

which shows that ψ1 is a homomorphism. Furthermore, we see that

Kerψ1 = {Aθ ∈ SO(2,R) : ψ1(Aθ) = I3}

= {Aθ ∈ SO(2,R) :

[
1 0
0 Aθ

]
= I3}

= {Aθ ∈ SO(2,R) : Aθ = I2}

= {I2},
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which shows that ψ1 is injective, and hence a monomorphism.

(c) For any nontrivialAθ ∈ SO(2,R), a direct computation reveals that ψ1(Aθ)ψ2(Aθ) 6=
ψ2(Aθ)ψ1(Aθ), which shows that SO(3,R) is non-abelian.
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6. Let G be a finite group of order n.

(a) Show that for each g ∈ Z(G), the conjugacy class [g]c = {g}.
(b) Let g1, . . . , gk be the the representatives of the distinct conjugacy classes in

G \ Z(G). Show that

n = |Z(G)|+
k∑
i=1

|[gi]c|.

(c) Suppose that n = p2, where p is prime. Assuming the fact that p | |[gi]c|, for
each i, show that G is abelian.

Solution. (a) By definition, we know that

Z(G) = {g ∈ G : gh = hg, ∀h ∈ G.}

Therefore, for g ∈ Z(G), we have

[g]c = {h ∈ G : h ∼c g} (By definition of conjugacy class)
= {h ∈ G : h = xgx−1, for some x ∈ G} (By definition of conjugacy)
= {h ∈ G : h = gxx−1 = g} (∵ g ∈ Z(G))
= {g}.

(b) We know from class (see Lesson Plan 5.4 (ii)), we know ∼c defines an equiv-
alence relation on G whose equivalence classes are the distinct conjugacy classes
of G. Let

Gc = {[g]c : g ∈ G}.
As the sum of the number of elements in the distinct conjugacy classes of G add
up to the order of G, we have

|G| =
∑

[g]c∈Gc

|[g]c|

=
∑

g∈Z(G)

|{g}|+
k∑
i=1

|[gi]c| (By (a))

= |Z(G)|+
k∑
i=1

|[g]c|,

as required.

(c) Suppose that |G| = p2, where p is prime. Then by Lagrange’s Theorem, we
have that |Z(G)| = 1 or p or p2. If |Z(G)| = p2, then we have that Z(G) = G,
that is, G is abelian.

Suppose we assume that |Z(G)| < p2. If |Z(G)| = 1, then by (b), we have that

p2 = 1 +
k∑
i=1

|[gi]c|.

Since p | |[gi]c|, for each i, it follows that p |
∑k

i=1 |[gi]c|. Further, as p | p2, this
would imply that p | 1, which is impossible. Thus, we have that

Z(G) 6= {1}, (κ)

and so it follows that |Z(G)| = p. Since this implies that, G/Z(G) is a group or
order p, it follows that G/Z(G) is cyclic. Finally, we conclude from Midterm Q.3
(Z/Z(G) is cyclic ⇐⇒ G is abelian), that G is abelian.
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7. (Bonus) Show that for n ≥ 2, there exists a monomorphism Sn → GL(n,R).

Solution. Given a matrix M ∈ GL(n,R), we may view it as a matrix [M1M2

. . .Mn], where for 1 ≤ i ≤ n, Mi represents the ith column vector of M . With
this understanding, the identity matrix In = [e1 e2 . . . en], where for 1 ≤ j ≤ n,
ej is the jth unit vector in Rn.

Consider the map

ϕ : Sn → GL(n,R) : σ
ϕ7−→ Iσn := [eσ(1) eσ(2) . . . eσ(n)], ∀σ ∈ Sn.

This map is clearly well-defined. Furthermore, we see that given σ, τ ∈ Sn, we
have

ϕ(στ) = [e(στ)(1) . . . e(στ)(n)]
= [e(σ(τ(1)) . . . e(σ(τ(n))]
= [eσ(1) . . . eσ(n)][eτ(1) . . . eτ(n)] (see (††) below)
= ϕ(σ)ϕ(τ),

which shows that ϕ is a homomorphism.

Finally, we have
Kerϕ = {σ ∈ Sn : ϕ(σ) = In}

= {σ ∈ Sn : Iσn = In = I1n}
= {σ ∈ Sn : σ = 1}
= {1},

which shows that ϕ is injective.

(††) First, we note that for σ ∈ Sn, Iσn = (aij)n×n, where

aij =

{
1, if i = σ(j), and

0, otherwise.

So, for σ, τ ∈ Sn, let Iσn = (bij)n×n, Iτn = (cij)n×n, and Iστn = (fij)n×n. Then
IσnI

τ
n = (dij)n×n, where

dij =
n∑
k=1

bikckj

=
n∑
k=1

b(στ)(`i)kckj, where i = (στ)(`i), ∀i

=

{
1, if k = τ(`i) and j = `i, and

0, otherwise

=

{
1, if i = (τσ)(j), and

0, otherwise,

= fij,

from which the assertion follows.
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