MTH 203 Final Exam solutions

1. Show that \mathbb{Z}_n has a unique element of order 2 if, and only if, $2 \mid n$.

Solution. Suppose that \mathbb{Z}_n has a unique element of order 2. Then by the Lagrange's Theorem, it follows that $2 \mid n$.

Conversely, let us assume that $2 \mid n$. First, we note that in any group G, there is a one-to-one correspondence between the elements of order 2, and the distinct order 2 subgroups of G. By Lesson Plan 1.4 (iv), every proper subgroup of \mathbb{Z}_n is of the form $\langle [n/d] \rangle$, where d is a proper divisor of n. Moreover, by Lesson Plan 1.2 (vii), we know that for any $[k] \in \mathbb{Z}_n$, $o([k]) = n/\gcd(k, n)$, so we have that

$$o([n/d]) = 2 \iff n/\gcd(n/d, n) = 2 \iff n/(n/d) = 2 \iff d = 2.$$

Hence, \mathbb{Z}_n has a unique element of order 2, namely [n/2].

2. Show that a group G is abelian if, and only if, the map

$$\varphi:G\to G:g\stackrel{\varphi}{\mapsto}g^{-1}, \forall g\in G$$

is an isomorphism.

Solution. Suppose that φ is an isomorphism. Then for any $a, b \in G$, we have

$$b^{-1}a^{-1} = (ab)^{-1}$$
 (By group laws)
= $\varphi(ab)$ (By definition)
= $\varphi(a)\varphi(b)$ ($\because \varphi$ is a homomorphism)
= $a^{-1}b^{-1}$ (By definition)

Hence, it follows that G is abelian.

Conversely, suppose that G is abelian. Then for any $a, b \in G$, we have

$$\varphi(ab) = (ab)^{-1}$$
(By definition)
= $b^{-1}a^{-1}$ (By group laws)
= $a^{-1}b^{-1}$ ($\because G$ is abelian)
= $\varphi(a)\varphi(b)$.(By definition)

So, we have that φ is a homomorphism. It remains to show that φ is bijective. Since for each $g \in G$,

$$\varphi(g^{-1}) = (g^{-1})^{-1} = g,$$

is follows that φ is surjective. Furthermore, we see that

Ker
$$\varphi = \{x \in G : \varphi(x) = 1\}$$

= $\{x \in G : x^{-1} = 1\}$
= $\{x \in G : x = 1\}$
= $\{1\},$

from which it follows that φ is injective, and hence an isomorphism.

3. Let $\mathbb{R}_n[x]$ be the additive group of all polynomials of degree $\leq n$ in the variable x with coefficients from \mathbb{R} . For $1 \leq k \leq n$, let $D_k : \mathbb{R}_n[x] \to \mathbb{R}_n[x]$ be the k^{th} derivative map defined by

$$D_k(p(x)) = \frac{d^k}{dx^k}(p(x)), \,\forall \, p(x) \in \mathbb{R}_n[x].$$

- (a) Show that D_k is a homomorphism.
- (b) Determine $\operatorname{Ker} D_k$ and $\operatorname{Im} D_k$.
- (c) Show that $\mathbb{R}_n[x]/\mathbb{R}_{n-1}[x] \cong \mathbb{R}$.

Solution. (a) Given $f(x), g(x) \in \mathbb{R}_n[x]$, we see that

$$D_{k}(f(x) + g(x)) = \frac{d^{k}}{dx^{k}}(f(x) + g(x))$$
(By definition)
$$= \frac{d^{k}}{dx^{k}}(f(x)) + \frac{d^{k}}{dx^{k}}(g(x))$$
(Derivative laws)
$$= D_{k}(f(x)) + D_{k}(g(x)),$$
(By definition)

which shows that D_k is a homomorphism.

(b) First, we observe that given $p(x) \in \mathbb{R}_n[x]$ is a polynomial with $\deg(p(x)) = \ell$, then

$$\deg(D_k(p(x))) = \begin{cases} \ell - k, & \text{if } \ell > k, \text{ and} \\ 0, & \text{otherwise.} \end{cases}$$
(**)

Therefore, we have

$$\begin{array}{rcl} \operatorname{Ker} D_k &=& \{p(x) \in \mathbb{R}_n[x] : D_k(p(x)) = 0\} & (\operatorname{By definition}) \\ &=& \{p(x) \in \mathbb{R}_n[x] : \deg(p(x)) \leq k-1\} & (\operatorname{By}(**)) \\ &=& \mathbb{R}_{k-1}[x]. & (\operatorname{By definition}) \end{array}$$

From (**), it is apparent that $\operatorname{Im} D_k < \mathbb{R}_{n-k}[x]$. Furthermore, given any $p(x) \in \mathbb{R}_{n-k}[x]$, let $P_k(x)$ be any k^{th} anti-derivative of p(x) whose constant term is 0. More precisely, if $p(x) = \sum_{i=1}^{n-k} a_i x^i$, then $P_k(x)$ has the form

$$P_k(x) = \sum_{i=1}^{n-k-1} c_i x^i + \sum_{i=n-k}^n b_i x^i, \text{ where the } c_i \in \mathbb{R} \text{ are arbitrary, and } b_i = \frac{a_i}{iP_k}.$$

Then by the definition of anti-derivative, we have $D_k(P_k(x)) = p(x)$, which shows that

$$\operatorname{Im} D_k = \mathbb{R}_{n-k}[x].$$

(c) Applying the First Isomorphism Theorem to the homomorphism D_n , we get

$$\mathbb{R}_n[x]/\operatorname{Ker} D_n \cong \operatorname{Im} D_n$$

Moreover, by (b), we know that

Ker
$$D_n = \mathbb{R}_{n-1}[x]$$
 and Im $D_n = \mathbb{R}_0[x]$.

The assertion now follows from the fact that $\mathbb{R}_0[x] = \mathbb{R}$, the additive group of all constant polynomials.

- 4. Consider the group $G = A_4$.
 - (a) Describe the order 2 subgroups of G.
 - (b) Describe the order 3 subgroups of G.
 - (c) Does G have an element g with $o(g) \ge 4$? Explain why, or why not.
 - (d) Show that G has a unique subgroup of order 4.

Solution. We know form Lesson Plan 6.1 (vii), that the group G is isomorphic to the group of rotational symmetries of a tetrahedron T_4 (see Lesson Plan 6.2 (vii)). To describe this isomorphism explicitly, we label the vertices of the tetrahedron with the indices 1-4, and see that each rotational symmetry $r \in \text{Sym}(T_4)$ induces an even permutation σ_r of the set of vertices $\{1, 2, 3, 4\}$. Hence, the map

$$\operatorname{Sym}(T_4) \to A_4 : r \mapsto \sigma_r$$
 (*)

is an isomorphism.

(a) The order 2 subgroups of A_4 corresponds to (and are generated by) the order 2 elements in A_4 , which are induced by the order 2 (i.e π radians) rotations of T_4 under the isomorphism (*). There are precisely 3 such rotations about the 3 axes joining the mid points of opposite edges. These rotations induce permutations which are products of two disjoint transpositions. Hence, there are 3 distinct subgroups of A_4 of order 2, which are:

$$\langle (12)(34) \rangle$$
, $\langle (13)(24) \rangle$, and $\langle (14)(23) \rangle$.

(b) By Lagrange's theorem, every non-trivial element in a subgroup of order 3 is of order 3. Furthermore, as every subgroup of order 3 is cyclic, it is generated by an element of order 3. Since the map (*) is an isomorphism, any element of order 3 induced by a rotation of order 3 in $\text{Sym}(T_4)$. There are precisely 8 such nontrivial rotations (by $2\pi/3$ and $4\pi/3$ radians) about the 4 axes joining vertices in T_4 to the centers of opposite faces. These rotations induce 8 distinct 3-cycles in A_4 under the isomorphism (*). Finally, these 3-cycles generate 4 distinct subgroups, which are:

 $\langle (1\,2\,3)\rangle$, $\langle (2\,3\,4)\rangle$, $\langle (3\,4\,1)\rangle$, and $\langle (4\,1\,2)\rangle$.

(c) Any element g with $o(g) \ge 4$ has to be induced by a rotation of order ≥ 4 in $Sym(T_4)$ under the isomorphism (*). However, there exists no rotation in $Sym(T_4)$ of order greater than 3. Hence, there exists no element $g \in A_4$ with $o(g) \ge 4$.

(d) We know from class that any group of order 4 is isomorphic either to the cyclic group \mathbb{Z}_4 , or the Klein 4-group $\mathbb{Z}_2 \times \mathbb{Z}_2$. From (c) we know that G has no elements of order 4, so any subgroup of order 4 in A_4 (if it exists) has to be the Klein 4-group. Further, we know that the Klein 4-group has 3 non-trivial elements order 2. From (b), we know that A_4 has exactly 3 distinct elements of order 2, namely:

(12)(34), (13)(24), and (14)(23).

These three elements together generate a order 4 subgroup in A_4 given by

 $\{1, (12)(34), (13)(24), (14)(23)\},\$

which is isomorphic to the Klein 4-group.

- 5. (a) Is the group $SO(2, \mathbb{R})$ abelian? Prove or disprove.
 - (b) Describe two distinct monomorphisms $SO(2, \mathbb{R}) \to SO(3, \mathbb{R})$.
 - (c) Show that $SO(3, \mathbb{R})$ is non-abelian.

Solution. (a) From class (see Lesson Plan 6.3 (iii)), we know that $SO(2, \mathbb{R}) \cong S^1$. Since S^1 is an abelian group under complex multiplication, it follows that $SO(2, \mathbb{R})$ is abelian.

(b) We know from class (see Lesson Plan 6.3 (iii)), that any element in $SO(2, \mathbb{R})$ is of the form

$$A_{\theta} := \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}, \ \theta \in \mathbb{R}.$$

We consider two maps $\psi_1, \psi_2 : SO(2, \mathbb{R}) \to SO(3, \mathbb{R})$ defined in the following manner:

$$\psi_1(A_{\theta}) = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos(\theta) & \sin(\theta)\\ 0 & -\sin(\theta) & \cos(\theta) \end{bmatrix}, \ \psi_2(A_{\theta}) = \begin{bmatrix} \cos(\theta) & \sin(\theta) & 0\\ -\sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix}, \ \text{for } A_{\theta} \in \text{SO}(2, \mathbb{R})$$

A simple computation reveals that for $i = 1, 2, \psi_i(A_\theta) \in SO(3, \mathbb{R})$, for each $\theta \in \mathbb{R}$. Moreover, given $\alpha, \beta \in \mathbb{R}$ with $\alpha = \beta$, we have that

$$A_{\alpha} = A_{\beta} \implies \psi_i(A_{\alpha}) = \psi_i(A_{\beta}),$$

which shows that ψ_i is well-defined for i = 1, 2.

We will now show that ψ_1 is a monomorphism, as the argument for ψ_2 is analogous. First, we observe that given $A_{\alpha}, A_{\beta} \in SO(2, \mathbb{R})$, we have

$$A_{\alpha}A_{\beta} = \begin{bmatrix} \cos(\alpha + \beta) & \sin(\alpha + \beta) \\ -\sin(\alpha + \beta) & \cos(\alpha + \beta) \end{bmatrix} = A_{\alpha + \beta}.$$
 (†)

For simplicity of notation, we will write $\psi_1(A_\theta) = \begin{bmatrix} 1 & 0 \\ 0 & A_\theta \end{bmatrix}$. With this notation in place, we have

$$\psi_{1}(A_{\alpha})\psi_{1}(A_{\beta}) = \begin{bmatrix} 1 & 0\\ 0 & A_{\alpha}A_{\beta} \end{bmatrix}$$
(By direct computation)
$$= \begin{bmatrix} 1 & 0\\ 0 & A_{\alpha+\beta} \end{bmatrix}$$
(By (†))
$$= \psi_{1}(A_{\alpha+\beta})$$
(By definition)
$$= \psi_{1}(A_{\alpha}A_{\beta})$$
(By (†)),

which shows that ψ_1 is a homomorphism. Furthermore, we see that

$$\operatorname{Ker} \psi_{1} = \{A_{\theta} \in \operatorname{SO}(2, \mathbb{R}) : \psi_{1}(A_{\theta}) = I_{3}\}$$
$$= \{A_{\theta} \in \operatorname{SO}(2, \mathbb{R}) : \begin{bmatrix} 1 & 0 \\ 0 & A_{\theta} \end{bmatrix} = I_{3}\}$$
$$= \{A_{\theta} \in \operatorname{SO}(2, \mathbb{R}) : A_{\theta} = I_{2}\}$$
$$= \{I_{2}\},$$

which shows that ψ_1 is injective, and hence a monomorphism.

(c) For any nontrivial $A_{\theta} \in SO(2, \mathbb{R})$, a direct computation reveals that $\psi_1(A_{\theta})\psi_2(A_{\theta}) \neq \psi_2(A_{\theta})\psi_1(A_{\theta})$, which shows that $SO(3, \mathbb{R})$ is non-abelian.

- 6. Let G be a finite group of order n.
 - (a) Show that for each $g \in Z(G)$, the conjugacy class $[g]_c = \{g\}$.
 - (b) Let g_1, \ldots, g_k be the representatives of the distinct conjugacy classes in $G \setminus Z(G)$. Show that

$$n = |Z(G)| + \sum_{i=1}^{\kappa} |[g_i]_c|.$$

(c) Suppose that $n = p^2$, where p is prime. Assuming the fact that $p \mid |[g_i]_c|$, for each i, show that G is abelian.

Solution. (a) By definition, we know that

$$Z(G) = \{g \in G : gh = hg, \,\forall h \in G.\}$$

Therefore, for $g \in Z(G)$, we have

$$\begin{split} [g]_c &= \{h \in G : h \sim_c g\} & (By \text{ definition of conjugacy class}) \\ &= \{h \in G : h = xgx^{-1}, \text{ for some } x \in G\} & (By \text{ definition of conjugacy}) \\ &= \{h \in G : h = gxx^{-1} = g\} & (\because g \in Z(G)) \\ &= \{g\}. \end{split}$$

(b) We know from class (see Lesson Plan 5.4 (ii)), we know \sim_c defines an equivalence relation on G whose equivalence classes are the distinct conjugacy classes of G. Let

$$G_c = \{ [g]_c : g \in G \}.$$

As the sum of the number of elements in the distinct conjugacy classes of G add up to the order of G, we have

$$|G| = \sum_{[g]_c \in G_c} |[g]_c|$$

= $\sum_{g \in Z(G)} |\{g\}| + \sum_{i=1}^k |[g_i]_c|$ (By (a))
= $|Z(G)| + \sum_{i=1}^k |[g]_c|,$

as required.

(c) Suppose that $|G| = p^2$, where p is prime. Then by Lagrange's Theorem, we have that |Z(G)| = 1 or p or p^2 . If $|Z(G)| = p^2$, then we have that Z(G) = G, that is, G is abelian.

Suppose we assume that $|Z(G)| < p^2$. If |Z(G)| = 1, then by (b), we have that

$$p^2 = 1 + \sum_{i=1}^k |[g_i]_c|.$$

Since $p \mid |[g_i]_c|$, for each *i*, it follows that $p \mid \sum_{i=1}^k |[g_i]_c|$. Further, as $p \mid p^2$, this would imply that $p \mid 1$, which is impossible. Thus, we have that

$$Z(G) \neq \{1\},\tag{(\kappa)}$$

and so it follows that |Z(G)| = p. Since this implies that, G/Z(G) is a group or order p, it follows that G/Z(G) is cyclic. Finally, we conclude from Midterm Q.3 (Z/Z(G) is cyclic $\iff G$ is abelian), that G is abelian.

7. (Bonus) Show that for $n \ge 2$, there exists a monomorphism $S_n \to \operatorname{GL}(n, \mathbb{R})$.

Solution. Given a matrix $M \in GL(n, \mathbb{R})$, we may view it as a matrix $[M_1 M_2 \dots M_n]$, where for $1 \leq i \leq n$, M_i represents the i^{th} column vector of M. With this understanding, the identity matrix $I_n = [e_1 e_2 \dots e_n]$, where for $1 \leq j \leq n$, e_j is the j^{th} unit vector in \mathbb{R}^n .

Consider the map

$$\varphi: S_n \to \mathrm{GL}(n, \mathbb{R}) : \sigma \stackrel{\varphi}{\mapsto} I_n^{\sigma} := [e_{\sigma(1)} e_{\sigma(2)} \dots e_{\sigma(n)}], \, \forall \sigma \in S_n$$

This map is clearly well-defined. Furthermore, we see that given $\sigma, \tau \in S_n$, we have

$$\begin{aligned} \varphi(\sigma\tau) &= [e_{(\sigma\tau)(1)} \dots e_{(\sigma\tau)(n)}] \\ &= [e_{(\sigma(\tau(1))} \dots e_{(\sigma(\tau(n)))}] \\ &= [e_{\sigma(1)} \dots e_{\sigma(n)}][e_{\tau(1)} \dots e_{\tau(n)}] \text{ (see (\dagger\dagger) below)} \\ &= \varphi(\sigma)\varphi(\tau), \end{aligned}$$

which shows that φ is a homomorphism.

Finally, we have

$$\operatorname{Ker} \varphi = \{ \sigma \in S_n : \varphi(\sigma) = I_n \} \\ = \{ \sigma \in S_n : I_n^{\sigma} = I_n = I_n^1 \} \\ = \{ \sigma \in S_n : \sigma = 1 \} \\ = \{ 1 \},$$

which shows that φ is injective.

(††) First, we note that for $\sigma \in S_n$, $I_n^{\sigma} = (a_{ij})_{n \times n}$, where $a_{ij} = \begin{cases} 1, & \text{if } i = \sigma(j), \text{ and} \\ 0, & \text{otherwise.} \end{cases}$

So, for $\sigma, \tau \in S_n$, let $I_n^{\sigma} = (b_{ij})_{n \times n}$, $I_n^{\tau} = (c_{ij})_{n \times n}$, and $I_n^{\sigma \tau} = (f_{ij})_{n \times n}$. Then $I_n^{\sigma} I_n^{\tau} = (d_{ij})_{n \times n}$, where

$$d_{ij} = \sum_{\substack{k=1\\n}}^{n} b_{ik} c_{kj}$$

$$= \sum_{\substack{k=1\\n}}^{n} b_{(\sigma\tau)(\ell_i)k} c_{kj}, \text{ where } i = (\sigma\tau)(\ell_i), \forall i$$

$$= \begin{cases} 1, & \text{if } k = \tau(\ell_i) \text{ and } j = \ell_i, \text{ and} \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} 1, & \text{if } i = (\tau\sigma)(j), \text{ and} \\ 0, & \text{otherwise}, \end{cases}$$

$$= f_{ij},$$

from which the assertion follows.