MTH 203 Final Exam solutions

1. Show that \mathbb{Z}_{n} has a unique element of order 2 if, and only if, $2 \mid n$.

Solution. Suppose that \mathbb{Z}_{n} has a unique element of order 2. Then by the Lagrange's Theorem, it follows that $2 \mid n$.
Conversely, let us assume that $2 \mid n$. First, we note that in any group G, there is a one-to-one correspondence between the elements of order 2 , and the distinct order 2 subgroups of G. By Lesson Plan 1.4 (iv), every proper subgroup of \mathbb{Z}_{n} is of the form $\langle[n / d]\rangle$, where d is a proper divisor of n. Moreover, by Lesson Plan 1.2 (vii), we know that for any $[k] \in \mathbb{Z}_{n}, o([k])=n / \operatorname{gcd}(k, n)$, so we have that

$$
o([n / d])=2 \Longleftrightarrow n / \operatorname{gcd}(n / d, n)=2 \Longleftrightarrow n /(n / d)=2 \Longleftrightarrow d=2
$$

Hence, \mathbb{Z}_{n} has a unique element of order 2, namely $[n / 2]$.
2. Show that a group G is abelian if, and only if, the map

$$
\varphi: G \rightarrow G: g \stackrel{\varphi}{\mapsto} g^{-1}, \forall g \in G
$$

is an isomorphism.
Solution. Suppose that φ is an isomorphism. Then for any $a, b \in G$, we have

$$
\begin{aligned}
b^{-1} a^{-1} & =(a b)^{-1} & & \text { (By group laws) } \\
& =\varphi(a b) & & \text { (By definition) } \\
& =\varphi(a) \varphi(b) & & (\because \varphi \text { is a homomorphism) } \\
& =a^{-1} b^{-1} & & (\text { By definition })
\end{aligned}
$$

Hence, it follows that G is abelian.
Conversely, suppose that G is abelian. Then for any $a, b \in G$, we have

$$
\begin{aligned}
\varphi(a b) & =(a b)^{-1} & & \text { (By definition) } \\
& =b^{-1} a^{-1} & & \text { (By group laws) } \\
& =a^{-1} b^{-1} & & (\because G \text { is abelian) } \\
& =\varphi(a) \varphi(b) . & & \text { (By definition) }
\end{aligned}
$$

So, we have that φ is a homomorphism. It remains to show that φ is bijective. Since for each $g \in G$,

$$
\varphi\left(g^{-1}\right)=\left(g^{-1}\right)^{-1}=g,
$$

is follows that φ is surjective. Furthermore, we see that

$$
\begin{aligned}
\operatorname{Ker} \varphi & =\{x \in G: \varphi(x)=1\} \\
& =\left\{x \in G: x^{-1}=1\right\} \\
& =\{x \in G: x=1\} \\
& =\{1\},
\end{aligned}
$$

from which it follows that φ is injective, and hence an isomorphism.
3. Let $\mathbb{R}_{n}[x]$ be the additive group of all polynomials of degree $\leq n$ in the variable x with coefficients from \mathbb{R}. For $1 \leq k \leq n$, let $D_{k}: \mathbb{R}_{n}[x] \rightarrow \mathbb{R}_{n}[x]$ be the $k^{t h}$ derivative map defined by

$$
D_{k}(p(x))=\frac{d^{k}}{d x^{k}}(p(x)), \forall p(x) \in \mathbb{R}_{n}[x]
$$

(a) Show that D_{k} is a homomorphism.
(b) Determine Ker D_{k} and $\operatorname{Im} D_{k}$.
(c) Show that $\mathbb{R}_{n}[x] / \mathbb{R}_{n-1}[x] \cong \mathbb{R}$.

Solution. (a) Given $f(x), g(x) \in \mathbb{R}_{n}[x]$, we see that

$$
\begin{array}{rlrl}
D_{k}(f(x)+g(x)) & =\frac{d^{k}}{d x^{k}}(f(x)+g(x)) & & \text { (By definition) } \\
& =\frac{d^{k}}{d x^{k}}(f(x))+\frac{d^{k}}{d x^{k}}(g(x)) & & \text { (Derivative laws) } \\
& =D_{k}(f(x))+D_{k}(g(x)), & \text { (By definition) }
\end{array}
$$

which shows that D_{k} is a homomorphism.
(b) First, we observe that given $p(x) \in \mathbb{R}_{n}[x]$ is a polynomial with $\operatorname{deg}(p(x))=\ell$, then

$$
\operatorname{deg}\left(D_{k}(p(x))\right)= \begin{cases}\ell-k, & \text { if } \ell>k, \text { and } \tag{**}\\ 0, & \text { otherwise }\end{cases}
$$

Therefore, we have

$$
\begin{aligned}
\operatorname{Ker} D_{k} & =\left\{p(x) \in \mathbb{R}_{n}[x]: D_{k}(p(x))=0\right\} & & \text { (By definition) } \\
& =\left\{p(x) \in \mathbb{R}_{n}[x]: \operatorname{deg}(p(x)) \leq k-1\right\} & & \text { (By }(* *)) \\
& =\mathbb{R}_{k-1}[x] . & & \text { (By definition) }
\end{aligned}
$$

From $\left({ }^{* *}\right)$, it is apparent that $\operatorname{Im} D_{k}<\mathbb{R}_{n-k}[x]$. Furthermore, given any $p(x) \in$ $\mathbb{R}_{n-k}[x]$, let $P_{k}(x)$ be any $k^{\text {th }}$ anti-derivative of $p(x)$ whose constant term is 0 . More precisely, if $p(x)=\sum_{i=1}^{n-k} a_{i} x^{i}$, then $P_{k}(x)$ has the form

$$
P_{k}(x)=\sum_{i=1}^{n-k-1} c_{i} x^{i}+\sum_{i=n-k}^{n} b_{i} x^{i}, \text { where the } c_{i} \in \mathbb{R} \text { are arbitrary, and } b_{i}=\frac{a_{i}}{{ }^{i} P_{k}}
$$

Then by the definition of anti-derivative, we have $D_{k}\left(P_{k}(x)\right)=p(x)$, which shows that

$$
\operatorname{Im} D_{k}=\mathbb{R}_{n-k}[x]
$$

(c) Applying the First Isomorphism Theorem to the homomorphism D_{n}, we get

$$
\mathbb{R}_{n}[x] / \operatorname{Ker} D_{n} \cong \operatorname{Im} D_{n}
$$

Moreover, by (b), we know that

$$
\operatorname{Ker} D_{n}=\mathbb{R}_{n-1}[x] \text { and } \operatorname{Im} D_{n}=\mathbb{R}_{0}[x]
$$

The assertion now follows from the fact that $\mathbb{R}_{0}[x]=\mathbb{R}$, the additive group of all constant polynomials.
4. Consider the group $G=A_{4}$.
(a) Describe the order 2 subgroups of G.
(b) Describe the order 3 subgroups of G.
(c) Does G have an element g with $o(g) \geq 4$? Explain why, or why not.
(d) Show that G has a unique subgroup of order 4.

Solution. We know form Lesson Plan 6.1 (vii), that the group G is isomorphic to the group of rotational symmetries of a tetrahedron T_{4} (see Lesson Plan 6.2 (vii)). To describe this isomorphism explicitly, we label the vertices of the tetrahedron with the indices 1-4, and see that each rotational symmetry $r \in \operatorname{Sym}\left(T_{4}\right)$ induces an even permutation σ_{r} of the set of vertices $\{1,2,3,4\}$. Hence, the map

$$
\begin{equation*}
\operatorname{Sym}\left(T_{4}\right) \rightarrow A_{4}: r \mapsto \sigma_{r} \tag{*}
\end{equation*}
$$

is an isomorphism.
(a) The order 2 subgroups of A_{4} corresponds to (and are generated by) the order 2 elements in A_{4}, which are induced by the order 2 (i.e π radians) rotations of T_{4} under the isomorphism $\left({ }^{*}\right)$. There are precisely 3 such rotations about the 3 axes joining the mid points of opposite edges. These rotations induce permutations which are products of two disjoint transpositions. Hence, there are 3 distinct subgroups of A_{4} of order 2 , which are:

$$
\langle(12)(34)\rangle,\langle(13)(24)\rangle, \text { and }\langle(14)(23)\rangle .
$$

(b) By Lagrange's theorem, every non-trivial element in a subgroup of order 3 is of order 3. Furthermore, as every subgroup of order 3 is cyclic, it is generated by an element of order 3 . Since the map $\left(^{*}\right.$) is an isomorphism, any element of order 3 induced by a rotation of order 3 in $\operatorname{Sym}\left(T_{4}\right)$. There are precisely 8 such nontrivial rotations (by $2 \pi / 3$ and $4 \pi / 3$ radians) about the 4 axes joining vertices in T_{4} to the centers of opposite faces. These rotations induce 8 distinct 3 -cycles in A_{4} under the isomorphism $\left(^{*}\right)$. Finally, these 3 -cycles generate 4 distinct subgroups, which are:

$$
\langle(123)\rangle,\langle(234)\rangle,\langle(341)\rangle, \text { and }\langle(412)\rangle .
$$

(c) Any element g with $o(g) \geq 4$ has to be induced by a rotation of order ≥ 4 in $\operatorname{Sym}\left(T_{4}\right)$ under the isomorphism (*). However, there exists no rotation in $\operatorname{Sym}\left(T_{4}\right)$ of order greater than 3. Hence, there exists no element $g \in A_{4}$ with $o(g) \geq 4$.
(d) We know from class that any group of order 4 is isomorphic either to the cyclic group \mathbb{Z}_{4}, or the Klein 4-group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. From (c) we know that G has no elements of order 4 , so any subgroup of order 4 in A_{4} (if it exists) has to be the Klein 4 -group. Further, we know that the Klein 4 -group has 3 non-trivial elements order 2. From (b), we know that A_{4} has exactly 3 distinct elements of order 2, namely:

$$
(12)(34),(13)(24), \text { and }(14)(23)
$$

These three elements together generate a order 4 subgroup in A_{4} given by

$$
\{1,(12)(34),(13)(24),(14)(23)\}
$$

which is isomorphic to the Klein 4-group.
5. (a) Is the group $\mathrm{SO}(2, \mathbb{R})$ abelian? Prove or disprove.
(b) Describe two distinct monomorphisms $\mathrm{SO}(2, \mathbb{R}) \rightarrow \mathrm{SO}(3, \mathbb{R})$.
(c) Show that $\mathrm{SO}(3, \mathbb{R})$ is non-abelian.

Solution. (a) From class (see Lesson Plan 6.3 (iii)), we know that $\mathrm{SO}(2, \mathbb{R}) \cong S^{1}$. Since S^{1} is an abelian group under complex multiplication, it follows that $\operatorname{SO}(2, \mathbb{R})$ is abelian.
(b) We know from class (see Lesson Plan 6.3 (iii)), that any element in $\operatorname{SO}(2, \mathbb{R})$ is of the form

$$
A_{\theta}:=\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right], \theta \in \mathbb{R} .
$$

We consider two maps $\psi_{1}, \psi_{2}: \mathrm{SO}(2, \mathbb{R}) \rightarrow \mathrm{SO}(3, \mathbb{R})$ defined in the following manner:
$\psi_{1}\left(A_{\theta}\right)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\theta) & \sin (\theta) \\ 0 & -\sin (\theta) & \cos (\theta)\end{array}\right], \psi_{2}\left(A_{\theta}\right)=\left[\begin{array}{ccc}\cos (\theta) & \sin (\theta) & 0 \\ -\sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]$, for $A_{\theta} \in \operatorname{SO}(2, \mathbb{R})$.
A simple computation reveals that for $i=1,2, \psi_{i}\left(A_{\theta}\right) \in \mathrm{SO}(3, \mathbb{R})$, for each $\theta \in \mathbb{R}$. Moreover, given $\alpha, \beta \in \mathbb{R}$ with $\alpha=\beta$, we have that

$$
A_{\alpha}=A_{\beta} \Longrightarrow \psi_{i}\left(A_{\alpha}\right)=\psi_{i}\left(A_{\beta}\right),
$$

which shows that ψ_{i} is well-defined for $i=1,2$.
We will now show that ψ_{1} is a monomorphism, as the argument for ψ_{2} is analogous. First, we observe that given $A_{\alpha}, A_{\beta} \in \mathrm{SO}(2, \mathbb{R})$, we have

$$
A_{\alpha} A_{\beta}=\left[\begin{array}{cc}
\cos (\alpha+\beta) & \sin (\alpha+\beta) \\
-\sin (\alpha+\beta) & \cos (\alpha+\beta)
\end{array}\right]=A_{\alpha+\beta}
$$

For simplicity of notation, we will write $\psi_{1}\left(A_{\theta}\right)=\left[\begin{array}{cc}1 & 0 \\ 0 & A_{\theta}\end{array}\right]$. With this notation in place, we have

$$
\begin{aligned}
\psi_{1}\left(A_{\alpha}\right) \psi_{1}\left(A_{\beta}\right) & =\left[\begin{array}{cc}
1 & 0 \\
0 & A_{\alpha} A_{\beta}
\end{array}\right] \quad \text { (By direct computation) } \\
& =\left[\begin{array}{cc}
1 & 0 \\
0 & A_{\alpha+\beta}
\end{array}\right] \quad(\mathrm{By}(\dagger)) \\
& =\psi_{1}\left(A_{\alpha+\beta}\right) \quad(\text { By definition }) \\
& =\psi_{1}\left(A_{\alpha} A_{\beta}\right) \quad(\mathrm{By}(\dagger)),
\end{aligned}
$$

which shows that ψ_{1} is a homomorphism. Furthermore, we see that

$$
\begin{aligned}
\operatorname{Ker} \psi_{1} & =\left\{A_{\theta} \in \operatorname{SO}(2, \mathbb{R}): \psi_{1}\left(A_{\theta}\right)=I_{3}\right\} \\
& =\left\{A_{\theta} \in \operatorname{SO}(2, \mathbb{R}):\left[\begin{array}{cc}
1 & 0 \\
0 & A_{\theta}
\end{array}\right]=I_{3}\right\} \\
& =\left\{A_{\theta} \in \operatorname{SO}(2, \mathbb{R}): A_{\theta}=I_{2}\right\} \\
& =\left\{I_{2}\right\},
\end{aligned}
$$

which shows that ψ_{1} is injective, and hence a monomorphism.
(c) For any nontrivial $A_{\theta} \in \operatorname{SO}(2, \mathbb{R})$, a direct computation reveals that $\psi_{1}\left(A_{\theta}\right) \psi_{2}\left(A_{\theta}\right) \neq$ $\psi_{2}\left(A_{\theta}\right) \psi_{1}\left(A_{\theta}\right)$, which shows that $\operatorname{SO}(3, \mathbb{R})$ is non-abelian.
6. Let G be a finite group of order n.
(a) Show that for each $g \in Z(G)$, the conjugacy class $[g]_{c}=\{g\}$.
(b) Let g_{1}, \ldots, g_{k} be the the representatives of the distinct conjugacy classes in $G \backslash Z(G)$. Show that

$$
n=|Z(G)|+\sum_{i=1}^{k}\left|\left[g_{i}\right]_{c}\right| .
$$

(c) Suppose that $n=p^{2}$, where p is prime. Assuming the fact that $p\left|\left|\left[g_{i}\right]_{c}\right|\right.$, for each i, show that G is abelian.

Solution. (a) By definition, we know that

$$
Z(G)=\{g \in G: g h=h g, \forall h \in G .\}
$$

Therefore, for $g \in Z(G)$, we have

$$
\begin{array}{rlrl}
{[g]_{c}} & =\left\{h \in G: h \sim_{c} g\right\} & & \text { (By definition of conjugacy class) } \\
& =\left\{h \in G: h=x g x^{-1}, \text { for some } x \in G\right\} & \text { (By definition of conjugacy) } \\
& =\left\{h \in G: h=g x x^{-1}=g\right\} & & (\because g \in Z(G)) \\
& =\{g\} . & &
\end{array}
$$

(b) We know from class (see Lesson Plan 5.4 (ii)), we know \sim_{c} defines an equivalence relation on G whose equivalence classes are the distinct conjugacy classes of G. Let

$$
G_{c}=\left\{[g]_{c}: g \in G\right\}
$$

As the sum of the number of elements in the distinct conjugacy classes of G add up to the order of G, we have

$$
\begin{aligned}
|G| & =\sum_{[g]_{c} \in G_{c}}\left|[g]_{c}\right| \\
& =\sum_{g \in Z(G)}|\{g\}|+\sum_{i=1}^{k}\left|\left[g_{i}\right]_{c}\right| \quad(\text { By (a)) } \\
& =|Z(G)|+\sum_{i=1}^{k}\left|[g]_{c}\right|
\end{aligned}
$$

as required.
(c) Suppose that $|G|=p^{2}$, where p is prime. Then by Lagrange's Theorem, we have that $|Z(G)|=1$ or p or p^{2}. If $|Z(G)|=p^{2}$, then we have that $Z(G)=G$, that is, G is abelian.
Suppose we assume that $|Z(G)|<p^{2}$. If $|Z(G)|=1$, then by (b), we have that

$$
p^{2}=1+\sum_{i=1}^{k}\left|\left[g_{i}\right]_{c}\right| .
$$

Since $p\left|\left|\left[g_{i}\right]_{c}\right|\right.$, for each i, it follows that $\left.p\right| \sum_{i=1}^{k}\left|\left[g_{i}\right]_{c}\right|$. Further, as $p \mid p^{2}$, this would imply that $p \mid 1$, which is impossible. Thus, we have that

$$
Z(G) \neq\{1\}
$$

and so it follows that $|Z(G)|=p$. Since this implies that, $G / Z(G)$ is a group or order p, it follows that $G / Z(G)$ is cyclic. Finally, we conclude from Midterm Q. 3 $(Z / Z(G)$ is cyclic $\Longleftrightarrow G$ is abelian), that G is abelian.
7. (Bonus) Show that for $n \geq 2$, there exists a monomorphism $S_{n} \rightarrow \operatorname{GL}(n, \mathbb{R})$.

Solution. Given a matrix $M \in \operatorname{GL}(n, \mathbb{R})$, we may view it as a matrix $\left[M_{1} M_{2}\right.$ $\left.\ldots M_{n}\right]$, where for $1 \leq i \leq n, M_{i}$ represents the $i^{\text {th }}$ column vector of M. With this understanding, the identity matrix $I_{n}=\left[e_{1} e_{2} \ldots e_{n}\right]$, where for $1 \leq j \leq n$, e_{j} is the $j^{\text {th }}$ unit vector in \mathbb{R}^{n}.
Consider the map

$$
\varphi: S_{n} \rightarrow \mathrm{GL}(n, \mathbb{R}): \sigma \stackrel{\varphi}{\mapsto} I_{n}^{\sigma}:=\left[e_{\sigma(1)} e_{\sigma(2)} \ldots e_{\sigma(n)}\right], \forall \sigma \in S_{n} .
$$

This map is clearly well-defined. Furthermore, we see that given $\sigma, \tau \in S_{n}$, we have

$$
\begin{aligned}
\varphi(\sigma \tau) & =\left[e_{(\sigma \tau)(1)} \ldots e_{(\sigma \tau)(n)}\right] \\
& =\left[e_{(\sigma(\tau(1))} \ldots e_{(\sigma(\tau(n))}\right] \\
& =\left[\begin{array}{ll}
\sigma(1) & \ldots \\
\sigma(n)
\end{array}\right]\left[e_{\tau(1)} \ldots e_{\tau(n)}\right] \text { (see (††) below) } \\
& =\varphi(\sigma) \varphi(\tau),
\end{aligned}
$$

which shows that φ is a homomorphism.
Finally, we have

$$
\begin{aligned}
\operatorname{Ker} \varphi & =\left\{\sigma \in S_{n}: \varphi(\sigma)=I_{n}\right\} \\
& =\left\{\sigma \in S_{n}: I_{n}^{\sigma}=I_{n}=I_{n}^{1}\right\} \\
& =\left\{\sigma \in S_{n}: \sigma=1\right\} \\
& =\{1\},
\end{aligned}
$$

which shows that φ is injective.
$(\dagger \dagger)$ First, we note that for $\sigma \in S_{n}, I_{n}^{\sigma}=\left(a_{i j}\right)_{n \times n}$, where

$$
a_{i j}= \begin{cases}1, & \text { if } i=\sigma(j), \text { and } \\ 0, & \text { otherwise }\end{cases}
$$

So, for $\sigma, \tau \in S_{n}$, let $I_{n}^{\sigma}=\left(b_{i j}\right)_{n \times n}, I_{n}^{\tau}=\left(c_{i j}\right)_{n \times n}$, and $I_{n}^{\sigma \tau}=\left(f_{i j}\right)_{n \times n}$. Then $I_{n}^{\sigma} I_{n}^{\tau}=\left(d_{i j}\right)_{n \times n}$, where

$$
\begin{aligned}
d_{i j} & =\sum_{k=1}^{n} b_{i k} c_{k j} \\
& =\sum_{k=1}^{n} b_{(\sigma \tau)\left(\ell_{i}\right) k} c_{k j}, \text { where } i=(\sigma \tau)\left(\ell_{i}\right), \forall i \\
& = \begin{cases}1, & \text { if } k=\tau\left(\ell_{i}\right) \text { and } j=\ell_{i}, \text { and } \\
0, & \text { otherwise }\end{cases} \\
& = \begin{cases}1, & \text { if } i=(\tau \sigma)(j), \text { and } \\
0, & \text { otherwise, }\end{cases} \\
& =f_{i j},
\end{aligned}
$$

from which the assertion follows.

